Improved Upper Bounds on the Asymptotic Growth Velocity of Eden Clusters

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

a study on the effectiveness of textual modification on the improvement of iranian upper-intermediate efl learners’ reading comprehension

این پژوهش به منظور بررسی تأثیر اصلاح متنی بر بهبود توانایی درک مطلب زبان آموزان ایرانی بالاتر از سطح میانی انجام پذیرفت .بدین منظور 115 دانشجوی مرد و زن رشته مترجمی زبان انگلیسی در این پزوهش شرکت نمودند.

Improved upper bounds on sizes of codes

Let ( ) denote the maximum possible number of codewords in a binary code of length and minimum Hamming distance . For large values of , the best known upper bound, for fixed , is the Johnson bound. We give a new upper bound which is at least as good as the Johnson bound for all values of and , and for each there are infinitely many values of for which the new bound is better than the Johnson bo...

متن کامل

ASYMPTOTIC UPPER BOUNDS ON THE SHADES OF t-INTERSECTING FAMILIES

We examine the m-shades of t-intersecting families of k-subsets of [n], and conjecture on the optimal upper bound on their cardinalities. This conjecture extends Frankl’s General Conjecture that was proven true by Ahlswede–Khachatrian. From this we deduce the precise asymptotic upper bounds on the cardinalities of m-shades of t(m)-intersecting families of k(m)subsets of [2m], as m → ∞. A genera...

متن کامل

Improved Upper Bounds on the Reflexivity of Point Sets

Given a set S of n points in the plane, the reflexivity of S, ρ(S), is the minimum number of reflex vertices in a simple polygonalization of S. Arkin et al. [4] proved that ρ(S) ≤ ⌈n/2⌉ for any set S, and conjectured that the tight upper bound is ⌊n/4⌋. We show that the reflexivity of any set of n points is at most 3 7n+ O(1) ≈ 0.4286n. Using computer-aided abstract order type extension the upp...

متن کامل

Upper bounds on the solutions to n = p+m^2

ardy and Littlewood conjectured that every large integer $n$ that is not a square is the sum of a prime and a square. They believed that the number $mathcal{R}(n)$ of such representations for $n = p+m^2$ is asymptotically given by begin{equation*} mathcal{R}(n) sim frac{sqrt{n}}{log n}prod_{p=3}^{infty}left(1-frac{1}{p-1}left(frac{n}{p}right)right), end{equation*} where $p$ is a prime, $m$ is a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Statistical Physics

سال: 2020

ISSN: 0022-4715,1572-9613

DOI: 10.1007/s10955-020-02498-z